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1 Summary

• Limited dependent variable: A continuous dependent variable which can take only a limited range of
values (due to censoring or truncation).

• Truncated Data Sample: A sample from which some observations have been systematically excluded.

[E.g. a sample of households with incomes under $200,000 explicitly excludes households with incomes
over that level; thus: is not a random sample of all households.]

• Censored Data Sample: A sample from which no observations have been systematically excluded, but
some of the information contained in them has been suppressed.

[E.g. a sample of households in which all income levels are included, but for those with incomes in
excess of $200,000, the amount reported is always exactly $200,000 (to protect the privacy of high-income
respondents).]

• BLUE estimator: Best Linear Unbiased Estimator
(the OLS estimator for the linear regression model under the Gauss-Markov assumptions, in particular:
E(u|X) = 0 and E(uu′|X) = σ2I).

• Truncated Regression Model: A linear regression model for cross-sectional data in which the sampling
scheme entirely excludes, on the basis of outcomes on the dependent variable, part of the population.

• Truncated Normal Regression Model: The special case of the truncated regression model where the
underlying population model satisfies the classical linear model assumptions.

• Probability mass function: (pmf) a function that gives the probability that a discrete random variable
is exactly equal to some value.

• Probability density function: (pdf) a function, whose value at any sample (or point) in the sample
space can be interpreted as providing a relative likelihood that the value of the (continuous) random
variable would equal that sample (because the absolute likelihood for a continuous random variable to
take on any particular value is 0). The pdf is used to specify the probability of the random variable falling
within a particular range of values (as opposed to taking on any one value).

• Mixed probability distribution: a probability distribution which is a mixture (i.e. a weighted sum)
of different distributions (the weights correspond to the probabilities of different components occurring).

[E.g. a mixed discrete/continuous distribution is ‘partially’ discrete and ‘partially’ continuous]

• Censored Regression Model: A multiple regression model where the dependent variable has been
censored above and/or below some known threshold.

• Censored Normal Regression Model: The special case of the censored regression model where the
underlying population model satisfies the classical linear model assumptions.

• Tobit Model: A censored normal regression model, with left-censoring at 0.

• Corner Solution Response: Censored data (so the same model for estimation is used) with different
(truncated) interpretation: we are interested in the observed uncensored data themselves (so we want
to know E(yi|xi)), while for censored data we are actually interested in the (partially unobserved) data
“before censoring” (so we want to know E(y∗i |xi)).

• Selected Sample: A sample of data obtained not by random sampling but by selecting on the basis of
some observed or unobserved characteristic.

1



2 Extra Topic: Prediction and marginal effects from the censored
regression model1

There are potentially three conditional means of interest, and the resulting partial effects, in a censored regression
model (in particular: in the Tobit model). Which one is the “right” one, depends on the research question or
the purpose of study. We can consider:

⇒ the index/latent variable y∗:

E(y∗i |xi) = x′iβ =⇒ ∂E(y∗i |xi)
∂xi

= β

(which might be hard to interpret as y∗i is unobserved);

⇒ the observed censored variable y, drawn from the whole population:

E(yi|xi) =?? =⇒ ∂E(yi|xi)
∂xi

=??

(usually used for predictions from the model);

⇒ the observed uncensored variable y, i.e. conditionally on y∗ > 0 , drawn from the (truncated) subpopu-
lation

E(yi|yi > 0, xi) =?? =⇒ ∂E(yi|yi > 0, x)

∂x
=??.

We will derive the results for the second, censored case, and the results for the third, truncated case will follow.
The goal is to derive

E(yi|xi) = Φ

(
x′iβ

σ

)
· x′iβ + σ · φ

(
x′iβ

σ

)
, (17.25)

(which we need for the computer exercise) and

∂E(yi|x)

∂x
= β · Φ

(
x′iβ

σ

)
.

The theorem below, together with the proof, are given for the general case of double sided censoring (the results
for the Tobit model can be obtained as a special case).

1Based on Greene (2010), “Econometric Analysis”, Chapter 19.
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Theorem: Partial Effects in the Censored Regression Model

In the censored regression model with latent regression y∗ = x′β + ε and observed dependent variable

yi =


a, if y∗i ≤ a,
y∗i , if a < y∗i < b,

b, if y∗i ≥ b,

where a and b are constants, let f(ε) and F (ε) denote the density and cdf of ε. Assume that ε is a
continuous random variable with mean 0 and variance σ2, and f(ε|x) = f(ε). Then:

∂E(y|x)

∂x
= β · P(y∗ ∈ (a, b)).

Proof. By definition

E(y|x) = a · P(y = a|x) + E(y|y ∈ (a, b), x) · P(y ∈ (a, b)|x) + b · P(y = b|x)

= a · P(y∗ ≤ a|x) + E(y∗|y∗ ∈ (a, b), x) · P(y∗ ∈ (a, b)|x) + b · P(y∗ ≥ b|x)

= a · P(x′β + ε ≤ a|x) + E(y∗|y∗ ∈ (a, b), x) · P(a < x′β + ε < b|x) + b · P(x′β + ε ≥ b|x)

= a · P(ε ≤ a− x′β|x) + E(y∗|y∗ ∈ (a, b), x) · P(a− x′β < ε < b− x′β|x) + b · P(ε ≥ b− x′β|x)

= a · P
(
ε

σ
≤ a− x′β

σ

∣∣∣∣x)+ E(y∗|y∗ ∈ (a, b), x) · P
(
a− x′β

σ
<
ε

σ
<
b− x′β
σ

∣∣∣∣x)+ b · P
(
ε

σ
≥ b− x′β

σ

∣∣∣∣x) .
(1)

Denote z = ε
σ ,

A =
a− x′β

σ
, Fa = F (A), fa = f(A),

B =
b− x′β
σ

, Fb = F (B), fb = f(B),

so that (1) becomes

E(y|x) = a · P
(
ε

σ
≤ a− x′β

σ

∣∣∣∣x)+ E(y∗|y∗ ∈ (a, b), x) · P
(
a− x′β

σ
<
ε

σ
<
b− x′β
σ

∣∣∣∣x)+ b · P
(
ε

σ
≥ b− x′β

σ

∣∣∣∣x)
= a · P (z ≤ A|x) + E(y∗|y∗ ∈ (a, b), x) · P (A < z < B|x) + b · P (z ≥ B|x)

= a · Fa + E(y∗|y∗ ∈ (a, b), x)︸ ︷︷ ︸
(?)

·(Fb − Fa) + b · (1− Fb).

Next, we want to obtain the (?) term, i.e. the conditional mean of the continuous variable. Notice that this
is the expectation of the truncated variable, E(y|y ∈ (a, b), x), i.e. expectation of y conditionally on y falling
between the truncation points a and b. Hence, it will also answer our third question. By properties of the
conditional expectation:

E(y∗|y∗ ∈ (a, b), x) = E(x′β + ε| a < x′β + ε < b, x)

= x′β + E(ε| a− x′β < ε < b− x′β, x)

= x′β + σE
(
ε

σ

∣∣∣ a− x′β
σ

<
ε

σ
<
b− x′β
σ

, x

)
= x′β + σE (z|A < z < B, x)

(∗)
= x′β + σ

∫ B

A

zf(z)

Fb − Fa
dz, (2)

= x′β +
σ

Fb − Fa

∫ B

A

zf(z)dz,

where normalising by a constant (Fb − Fa) in (∗) is due to truncation.
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Collecting (1) and (2) gives us the desired expectation of the censored variable:

E(y|x) = a · Fa + E(y∗|y∗ ∈ (a, b), x) · (Fb − Fa) + b · (1− Fb)

= a · Fa +

[
x′β +

σ

Fb − Fa

∫ B

A

zf(z)dz

]
· (Fb − Fa) + b · (1− Fb)

= a · Fa + x′β · (Fb − Fa) + σ

∫ B

A

zf(z)dz︸ ︷︷ ︸
(�)

+b · (1− Fb). (3)

What is only left is to differentiate (3) wrt to x. Notice that differentiating of the cdf F• wrt respect to x gives

us the pdf f• ·
(
−β
σ

)
(• = a, b), where the last term obviously follows form the chain rule. Notice, that in (�)

the only place where x is present are the limits of integration. Hence, we need to use Leibnitz’s integral rule2

as follows:

∂E(y|x)

∂x
=a · fa ·

(
−β
σ

)
+ β · (Fb − Fa) + x′β ·

[
fb ·

(
−β
σ

)
− fa ·

(
−β
σ

)]
+

∂

∂x
σ

∫ B

A

zf(z)dz − b · fb ·
(
−β
σ

)
{
dA

dt
= −β

σ
, zf(z)|A = Afa

}
=a · fa ·

(
−β
σ

)
+ β · (Fb − Fa) + x′β ·

[
fb ·

(
−β
σ

)
− fa ·

(
−β
σ

)]
+ σ · (Bfb −Afa) ·

(
−β
σ

)
− b · fb ·

(
−β
σ

)
.

Finally, we simplify by cancelling out terms in the above expression (using the definitions of A and B), to
obtain:

∂E(y|x)

∂x
= β · (Fb − Fa)

= β · P(y∗i ∈ (a, b)).

2Leibnitz’s integral rule for differentiation under the integral sign states that:

d

dt

∫ b(t)

a(t)
f(x, t)dx = f(b(t), t) ·

db(t)

dt
− f(a(t), t) ·

da(t)

dt
+

∫ b(t)

a(t)

df(x, t)

dt
dx,

where in our case the last term drops out because f(z) does not depend on x.
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The result from the theorem applied to the particular case of the original Tobit model (with left-censoring at
0) simplifies to3:

∂E(yi|xi)
∂xi

= β · Φ
(
x′iβ

σ

)
.

Roughly speaking, it suggests that the OLS estimates of the coefficients in a Tobit model usually resemble the
MLEs times the proportion of nonlimit observations in the sample.

Hence, the marginal effects in the case of censoring are not β but smaller, with reduction factor Φ
(
x′iβ
σ

)
:

• the difference will be small for large values of
x′iβ
σ , as then Φ

(
x′iβ
σ

)
≈ 1;

• the difference will be large for small values of
x′iβ
σ , as then Φ

(
x′iβ
σ

)
≈ 0.

The intuition should be clear: we observe a positive yi > 0 when y∗i = x′iβ + εi > 0, so the condition for

observing an uncensored variable is zi = εi
σ > −x

′
iβ
σ .

• If
x′iβ
σ is high and positive, then this is a non-restrictive condition and we will usually observe yi = y∗i .

So when there is hardly any censoring, the marginal effects will be almost the same as in the standard
regression model, i.e. β.

• If
x′iβ
σ is high and negative, then this is a very restrictive condition and we will usually observe the censored

yi = 0. So when there is a “hard” censoring, the marginal effects will be negligible, and only via an increase
in the probability of recording a non-censored observation.

Hence, notice that the marginal effect of the explanatory variables in the Tobit model can be decomposed in
two parts: when x′iβ increases and

⇒ if yi = 0, then the probability of yi > 0 (a positive response) increases (i.e. the probability of falling in
the positive part of the distribution);

⇒ if yi > 0, then the mean response increases (i.e. the conditional mean of y∗).

3 Lecture Problems

Exercise 5

Suppose that we only started keeping track of these machine parts after 2 years and that by now all machine parts
are broken. That is, we now have left-truncated data where we only observe y∗i > ln(2) (instead of right-truncated
data with y∗i < ln(1) = 0).

(a) Derive the probability density function (pdf) of yi in this case.

Underlying population that satisfies all the classical linear model assumptions:

y∗i = x′iβ + ui, ui
i.i.d.∼ N (0, σ2)

where each ui is independent from each xj (i, j = 1, 2, . . . , n).

Left-truncated variable yi:

yi =

{
not observed, if y∗i ≤ ln(2),

y∗i , if y∗i > ln(2).

Here: boundary c = ln(2) for log-durations.

3Please check! Notice that then a = 0, there is no b (or, formally, b =∞) and F = Φ and f = φ.
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We start with deriving the cumulative distribution function (CDF) of the truncated observation yi
(given xi)

4, which is equal to the conditional probability P(y∗i ≤ a|y∗i > c) for a > c:

P(yi ≤ a) = P(y∗i ≤ a|y∗i > c)

(∗)
= P(y∗i ≤ a and y∗i > c|y∗i > c)

=
P(c < y∗i ≤ a)

P(y∗i > c)

(∗∗)
=

P
(
c−x′iβ
σ <

y∗i−x
′
iβ

σ ≤ a−x′iβ
σ

)
P
(
y∗i−x′iβ

σ >
c−x′iβ
σ

)
=

Φ
(
a−x′iβ
σ

)
− Φ

(
c−x′iβ
σ

)
1− Φ

(
c−x′iβ
σ

) ,

where in (∗) we used that c < a (so that y∗i ≤ a and y∗i > c imply c < y∗i ≤ a) and in (∗∗) that
y∗i−x

′
iβ

σ
has standard normal distribution N (0, 1).

Then, the probability density function (pdf) of yi is given by the derivative of the cdf:

pyi(a) =
∂P(yi ≤ a)

∂a

=
∂Φ
(
a−x′iβ
σ

)
∂a

· 1

1− Φ
(
c−x′iβ
σ

)
=

1
σφ
(
a−x′iβ
σ

)
1− Φ

(
c−x′iβ
σ

) .
(b) Derive the log-likelihood lnL(β, σ).

The likelihood function (of the whole sample) is given by:

L(β, σ) = p(y1, . . . , yn|x1, . . . , xn)

(∗)
=

n∏
i=1

p(yi|xi)

=

n∏
i=1

1
σφ
(
yi−x′iβ

σ

)
1− Φ

(
c−x′iβ
σ

) ,
where (∗) holds because y1, . . . , yn are independent (conditionally upon x1, . . . , xn).

And the loglikelihood is simply the logarithm of the likelihood:

lnL(β, σ) =

n∑
i=1

ln p(yi|xi)

=

n∑
i=1

{
− ln(σ) + ln

[
φ

(
yi − x′iβ

σ

)]
− ln

[
1− Φ

(
c− x′iβ
σ

)]}
.

Note that maximizing lnL(β, σ) (using numerical optimization method like BFGS) yields β̂ML and σ̂ML.

4Note: all probabilities below are conditional upon xi (dropped from notation to make formulas (hopefully) clearer).
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Exercise 6

Derive the log-likelihood in a linear regression model where the dependent variable is left-truncated (with bound
0) and right-censored (with bound 1). That is:

y∗i = x′iβ + ui,

ui ∼ N (0, σ2),

yi =


not observed, if y∗i ≤ 0,

y∗i , if 0 < y∗i < 1,

1, if y∗i ≥ 1.

First derive the probability P(yi = 1|xi) and the density for yi (for 0 < yi < 1).

The probability P(yi = 1|xi) is the conditional probability P(y∗i ≥ 1|y∗i > 0), because we only observe observa-
tions with y∗i > 0 (where the conditioning upon xi is again dropped from the notation):

P(y∗i ≥ 1|y∗i > 0) =
P(y∗i ≥ 1)

P(y∗i > 0)

=
P (x′iβ + ui ≥ 1)

P (x′iβ + ui > 0)

=
P(ui ≥ 1− x′iβ)

P(ui > 0− x′iβ)

=
P
(
ui

σ ≥
1−x′iβ
σ

)
P
(
ui

σ >
0−x′iβ
σ

)
=

1− P
(
ui

σ <
1−x′iβ
σ

)
1− P

(
ui

σ ≤
0−x′iβ
σ

)
=

1− Φ
(

1−x′iβ
σ

)
1− Φ

(
0−x′iβ
σ

) ,
where we used that ui

σ has a standard normal distribution.

The density for yi (for 0 < yi < 1) is the density in the left-truncated model (with boundary c = 0). From
Exercise 5 we already have the pdf:

pyi(a) =

1
σφ
(
a−x′iβ
σ

)
1− Φ

(
c−x′iβ
σ

)
=

1
σφ
(
a−x′iβ
σ

)
1− Φ

(
0−x′iβ
σ

) .
Note: censoring does not affect the pdf of those observations that are not censored. Whereas truncation does
affect the pdf of those observations that are not truncated.

Likelihood: product of probability density functions (♠) (for yi < 1 with continuous distribution) and probability
functions (♣) (for yi = 1 with discrete distribution) with observed yi (and xi) substituted:

L(β, σ) = p(y1, . . . , yn|x1, . . . , yn)

(∗)
=

n∏
i=1

p(yi|xi)

=
∏
{yi<1}

 1
σφ
(
yi−x′iβ

σ

)
1− Φ

(
0−x′iβ
σ

)


︸ ︷︷ ︸
(♠)

×
∏
{yi=1}

1− Φ
(

1−x′iβ
σ

)
1− Φ

(
0−x′iβ
σ

)


︸ ︷︷ ︸
(♣)

,
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where (∗) holds because y1, . . . , yn are independent (conditionally upon x1, . . . , xn).

Then, the loglikelihood is:

lnL(β, σ) =

n∑
i=1

ln p(yi|xi) =

=
∑
{yi<1}

{
− ln(σ) + ln

[
φ

(
yi − x′iβ

σ

)]
− ln

[
1− Φ

(
0− x′iβ

σ

)]}
︸ ︷︷ ︸

(♠)

+
∑
{yi=1}

{
ln

[
1− Φ

(
1− x′iβ

σ

)]
− ln

[
1− Φ

(
0− x′iβ

σ

)]}
︸ ︷︷ ︸

(♣)

.

Note: maximizing lnL(β, σ) (using numerical optimization method like BFGS) yields β̂ML and σ̂ML.

4 Exercises

4.1 W17/6

Consider a family saving function for the population of all families in the United States:

sav = β0 + β1inc+ β2hhsize+ β3educ+ β4age+ u,

where hhsize is household size, educ is years of education of the household head, and age is age of the household
head. Assume that E(u|inc, hhsize, educ, age) = 0.

(i) Suppose that the sample includes only families whose head is over 25 years old. If we use OLS on such a
sample, do we get unbiased estimators of the βj? Explain.

OLS will be unbiased, because we are choosing the sample on the basis of an exogenous explanatory vari-
able. The population regression function for sav is the same as the regression function in the subpopulation
with age > 25.

(ii) Now, suppose our sample includes only married couples without children. Can we estimate all of the
parameters in the saving equation? Which ones can we estimate?

Assuming that marital status and number of children affect sav only through household size (hhsize), this
is another example of exogenous sample selection. But, in the subpopulation of married people without
children, hhsize = 2. Because there is no variation in hhsize in the subpopulation, we would not be able
to estimate β2. Effectively, the intercept in the subpopulation becomes β0 + 2β2, and that is all we can
estimate. But, assuming there is variation in inc, educ, and age among married people without children
(and that we have a sufficiently varied sample from this subpopulation), we can still estimate β1, β3 and
β4.

(iii) Suppose we exclude from our sample families that save more than $25,000 per year. Does OLS produce
consistent estimators of the βj?

This would be selecting the sample on the basis of the dependent variable, which causes OLS to be
biased and inconsistent for estimating the β in the population model. We should instead use a truncated
regression model.

4.2 Double censoring problem

Management consultants working for a very large consultancy firm AwesomeConsulting are assigned to a number
of projects depending on their characteristics, collected in a k × 1 vector x′i for individual i (including their
salary, experience, etc.). We want to model their weekly chargeable hours yi. We have a random sample of N
independent observations on yi and corresponding x′i. For simplicity we model the regular number of hours as a
continuous variable, but take into account the possibility that during a week there might be no chargeable hours
and that the maximum number of hours that can be charged to a client is by contract limited to 40 hours.
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Figure 1: Double censoring: left censoring at 0 and right censoring at 40. Example with the mean x′iβ at 30 and

the standard deviation σ = 15. Then P(yi = 0|xi) = Φ
(
−x
′
iβ
σ

)
= 0.0228, P(yi = 40|xi) = 1 − Φ

(
40−x′iβ

σ

)
=

0.25258 and P(0 < yi < 40|xi) =
∫ 40

0
φ(z)dz = 0.7247.

(a) Model this situation using a latent variable y∗ given by:

y∗i = x′iβ + ui,

ui
i.i.d.∼ N (0, σ2).

Give the appropriate probability mass- and density functions for the different outcomes of the observed
charged hours y. Give an interpretation and illustrate the situation graphically.

Standard censored regression model with left and right censoring (at 0 and 40) is given by:

y∗i = x′iβ + ui,

ui
i.i.d.∼ N (0, σ2),

yi =


0, if y∗i ≤ 0,

y∗i , if 0 < y∗i < 40,

40, if y∗i ≥ 40.

The probability mass functions at the censored value of 0 is the probability of observing the value of 0:

P(yi = 0|xi) = P(y∗i ≤ 0|xi)
= P(x′iβ + ui ≤ 0|xi)
= P(ui ≤ −x′iβ|xi)
(∗)
= P

(
ui
σ
≤ −x

′
iβ

σ

∣∣∣∣xi)
(∗∗)
= P

(
ui
σ
≤ −x

′
iβ

σ

)
= Φ

(
−x
′
iβ

σ

)
,

where in (∗) we standardise ui by dividing it by its standard deviation σ and in (∗∗) we use the assumption
about independence of ui and xi.

Similarly, the probability mass functions at the censored value of 40 is the probability of observing the

9



value of 40:

P(yi = 40|xi) = P(y∗i ≥ 40|xi)
= P(x′iβ + ui ≥ 40|xi)
= P(ui ≥ 40− x′iβ|xi)
(∗)
= P

(
ui
σ
≥ 40− x′iβ

σ

∣∣∣∣xi)
(∗∗)
= P

(
ui
σ
≤ x′iβ − 40

σ

∣∣∣∣xi)
(∗∗∗)
= P

(
ui
σ
≤ x′iβ − 40

σ

)
= Φ

(
x′iβ − 40

σ

)
= Φ

(
−40− x′iβ

σ

)
(∗∗∗∗)

= 1− Φ

(
40− x′iβ

σ

)
,

where in (∗) we standardise ui by dividing it by its standard deviation σ, in (∗∗) we use the symmetry of
the standard normal distribution, in (∗ ∗ ∗) we use the assumption about independence of ui and xi and
in (∗ ∗ ∗∗) the property of Φ, the CDF of the standard normal distribution: Φ(−x) = 1− Φ(x).

For continuous yi ∈ (0, 40) we use the probability density function. Because then

yi = y∗i = x′iβ + ui,

with ui
i.i.d.∼ N (0, σ2), we have the standardised normal variable ui

σ =
yi−x′iβ

σ for which

p(yi|xi) =
1

σ
φ

(
yi − x′iβ

σ

)
.

(b) Derive the appropriate log-likelihood function for N independent observations.

Now the likelihood is a product of probability density functions (♠) (for 0 < yi < 40 with continuous
distribution) and two probability functions for yi with discrete distributions: (♣) for yi = 40 and (♥) for
yi = 0, with observed yi (and xi) substituted:

L(β, σ) =p(y1, . . . , yn|x1, . . . , yn)

(∗)
=

n∏
i=1

p(yi|xi)

=
∏

{0<yi<40}

[
1

σ
φ

(
yi − x′iβ

σ

)]
︸ ︷︷ ︸

(♠)

×
∏

{yi=40}

[
1− Φ

(
40− x′iβ

σ

)]
︸ ︷︷ ︸

(♣)

×
∏
{yi=0}

Φ

(
−x
′
iβ

σ

)
︸ ︷︷ ︸

(♥)

,

where (∗) holds because y1, . . . , yn are independent (conditionally upon x1, . . . , xn).

Then, the loglikelihood is:

lnL(β, σ) =

n∑
i=1

ln p(yi|xi) =

=
∑

{0<yi<40}

{
− ln(σ) + ln

[
φ

(
yi − x′iβ

σ

)]}
︸ ︷︷ ︸

(♠)

+
∑
{yi=40}

{
ln

[
1− Φ

(
40− x′iβ

σ

)]}
︸ ︷︷ ︸

(♣)

+
∑
{yi=0}

{
ln Φ

(
−x
′
iβ

σ

)}
︸ ︷︷ ︸

(♥)

.
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(c) What is the marginal effect of salary (2nd element in xi) on the possibility of individual i being fully (40
hours) chargeable?

We need to differentiate the probability of being charged 40 hours with respect to the second variable,
salary. We have:

∂P(yi = 40)

∂xi2
=
∂P(y∗i ≥ 40)

∂xi2

= φ

(
40− x′iβ

σ

)
β2
σ
.

Note that is it positive when β2 > 0.

(d) What problems in modelling can you expect in the following cases? Think about the validity of the model
assumptions.

(i) The sample consists of a sample based on direct colleagues from the same branch.

Contemporaneous correlation – causes observations to be non i.i.d..

(ii) The sample consists of a sample based on weeks for one individual such that i refers to the weeks in
the sample?

Serial correlation – causes observations to be non i.i.d..

5 Computer Exercise

W17/C3

Use the data in fringe.wf1 for this exercise5.

(i) For what percentage of the workers in the sample is pension equal to zero? What is the range of pension
for workers with nonzero pension benefits? Why is a Tobit model appropriate for modelling pension?

We can see that out of 616 workers, 172, or about 0.28%, have zero pension benefits. For the 444 workers
reporting positive pension benefits, the range is from 7.28 to 2, 880.276. Therefore, we have a nontrivial
fraction of the sample with pensioni = 0, and the range of positive pension benefits is fairly wide. The
Tobit model is well-suited to this kind of dependent variable.

(ii) Estimate a Tobit model explaining pension in terms of exper, age, tenure, educ, depends, married,
white, and male. Do whites and males have statistically significant higher expected pension benefits?

5N = 616, cross-sectional family data on pension benefits.
6You can easily check it in EViews by sorting pension: pension.sort.
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Being white or male (or, of course, both) increases predicted pension benefits, although only male is
statistically significant with the z statistics (asymptotically equal to the t statistics) z ≈ 4.41 and the
corresponding p-value (i.e. Prob. in the EViews output) of 0.0000. For white the p-value of 0.1581 does
not allow us to reject the null that its coefficient is equal 0 (at the standard significance level α = 0.05).

(iii) Use the results from part (ii) to estimate the difference in expected pension benefits for a white male and a
nonwhite female, both of whom are 35 years old, are single with no dependence, have 16 years of education,
and have 10 years of experience7.

We need to use formula (17.25) from the book, which is

E(y|x) = Φ

(
xTβ

σ

)
· xTβ + σ · φ

(
xTβ

σ

)
, (17.25)

and describes the expected value of the dependent variable y in the Tobit model.

First, we consider x(m) with white = 1, male = 1, age = 35, maried = 0, depends = 0, educ = 16 and
exper = tenure = 10. The linear index x(m)T β̂ is equal to

x(m)T β̂ = −1252.43 + 5.20 · 10− 4.64 · 35 + 36.02 · 10 + 93.21 · 16 + 35.28 · 0 + 53.69 · 0 + 144.09 · 1 + 308.15 · 1
= 940.97.

Second, we consider x(f) with white = 0, male = 0, age = 35, maried = 0, depends = 0, educ = 16 and
exper = tenure = 10. The linear index x(f)T β̂ is equal to

x(f)T β̂ = −1252.43 + 5.20 · 10− 4.64 · 35 + 36.02 · 10 + 93.21 · 16 + 35.28 · 0 + 53.69 · 0 + 144.09 · 0 + 308.15 · 0
= 488.73.

Since the estimated standard deviation σ of the error term ui is equal to σ̂ = 677.74 (c.f. SCALE: C(10)),
we have

E(pension|x(m)) = Φ

(
x(m)T β̂

σ̂

)
· x(m)T β̂ + σ̂ · φ

(
x(m)T β̂

σ̂

)

= Φ

(
940.97

677.74

)
· 940.97 + 677.74 · φ

(
940.97

677.74

)
= 0.92 · 940.97 + 677.74 · 0.15

= 966.49

7Hint: use the formula (17.25) from the book for the expectation of the censored variable (in other words, for the predicted
value from the Tobit model):

E(y|x) = Φ

(
xT β

σ

)
· xT β + σ · φ

(
xT β

σ

)
. (17.25)
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and

E(pension|x(f)) = Φ

(
x(f)T β̂

σ̂

)
· x(f)T β̂ + σ̂ · φ

(
x(f)T β̂

σ̂

)

= Φ

(
488.73

677.74

)
· 488.73 + 677.74 · φ

(
488.73

677.74

)
= 0.76 · 488.73 + 677.74 · 0.31

= 582.16,

respectively. The difference in the expected pension value for a white male and for a nonwhite female
with the same all other characteristics is thus

966.49− 582.16 = 384.33.

(iv) Add union to the Tobit model and comment on its significance.

The estimated coefficient for union is ‘large’ (equal to 439.05) and significant (p-value=0.0000).

(v) Apply the Tobit model from part (iv) but with peratio, the pension-earnings ratio, as the dependent variable.
(Notice that this is a fraction between zero and one, but, though it often takes on the value zero, it never
gets close to being unity. Thus, a Tobit model is fine as an approximation.) Does gender or race have an
effect on the pension-earnings ratio?

Indeed, the maximum value of peratio is less than 0.21, so a model with the right censoring is not needed.
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When peratio is used as the dependent variable in the Tobit model, both white and male become in-
significant (with the p-values of 0.6282 and 0.5670, respectively).

We can also check the joint significance of these two variables. For that, we can run the Wald test as
shown below.

The resulting F statistic is equal to 0.30 with the corresponding p-value of 0.7392. So at any reasonable
significance level we cannot reject the null that jointly white and male are insignificant.

Therefore, neither whites nor males seem to have different preferences for pension benefits as a fraction
of earnings. White males have higher pension benefits because they have, on average, higher earnings.
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