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1 Summary

e Limited dependent variable: A continuous dependent variable which can take only a limited range of
values (due to censoring or truncation).

e Truncated Data Sample: A sample from which some observations have been systematically excluded.

[E.g. a sample of households with incomes under $200,000 explicitly excludes households with incomes
over that level; thus: is not a random sample of all households.]

e Censored Data Sample: A sample from which no observations have been systematically excluded, but
some of the information contained in them has been suppressed.

[E.g. a sample of households in which all income levels are included, but for those with incomes in
excess of $200,000, the amount reported is always exactly $200,000 (to protect the privacy of high-income
respondents).]

e BLUE estimator: Best Linear Unbiased Estimator
(the OLS estimator for the linear regression model under the Gauss-Markov assumptions, in particular:
E(u|X) = 0 and E(uv’/|X) = o21).

e Truncated Regression Model: A linear regression model for cross-sectional data in which the sampling
scheme entirely excludes, on the basis of outcomes on the dependent variable, part of the population.

e Truncated Normal Regression Model: The special case of the truncated regression model where the
underlying population model satisfies the classical linear model assumptions.

e Probability mass function: (pmf) a function that gives the probability that a discrete random variable
is exactly equal to some value.

e Probability density function: (pdf) a function, whose value at any sample (or point) in the sample
space can be interpreted as providing a relative likelihood that the value of the (continuous) random
variable would equal that sample (because the absolute likelihood for a continuous random variable to
take on any particular value is 0). The pdf is used to specify the probability of the random variable falling
within a particular range of values (as opposed to taking on any one value).

e Mixed probability distribution: a probability distribution which is a mixture (i.e. a weighted sum)
of different distributions (the weights correspond to the probabilities of different components occurring).
[E.g. a mixed discrete/continuous distribution is ‘partially’ discrete and ‘partially’ continuous]

e Censored Regression Model: A multiple regression model where the dependent variable has been
censored above and/or below some known threshold.

e Censored Normal Regression Model: The special case of the censored regression model where the
underlying population model satisfies the classical linear model assumptions.

e Tobit Model: A censored normal regression model, with left-censoring at 0.

e Corner Solution Response: Censored data (so the same model for estimation is used) with different
(truncated) interpretation: we are interested in the observed uncensored data themselves (so we want
to know E(y;|z;)), while for censored data we are actually interested in the (partially unobserved) data
“before censoring” (so we want to know E(y}|z;)).

e Selected Sample: A sample of data obtained not by random sampling but by selecting on the basis of
some observed or unobserved characteristic.



2 Extra Topic: Prediction and marginal effects from the censored
regression model’

There are potentially three conditional means of interest, and the resulting partial effects, in a censored regression
model (in particular: in the Tobit model). Which one is the “right” one, depends on the research question or
the purpose of study. We can consider:

= the index/latent variable y*:

OE(y; |2:)

E(y|z:) = =i = 0z,

=4

(which might be hard to interpret as y; is unobserved);
= the observed censored variable y, drawn from the whole population:

3E(yi\$i)

=77
81‘,’

E(yz|$z) =77

(usually used for predictions from the model);

= the observed uncensored variable y, i.e. conditionally on y* > 0 , drawn from the (truncated) subpopu-
lation oF 0
. . > s
E(yly: > 0,a:) =77 — JEWilli>0.2) 4
Ox
We will derive the results for the second, censored case, and the results for the third, truncated case will follow.
The goal is to derive

Blule) =@ (22) s+ o0 (2], (17.25)

o
(which we need for the computer exercise) and

OE(yi|z) _ T
T = ().

T

The theorem below, together with the proof, are given for the general case of double sided censoring (the results
for the Tobit model can be obtained as a special case).

IBased on Greene (2010), “Econometric Analysis”, Chapter 19.



Theorem: Partial Effects in the Censored Regression Model
In the censored regression model with latent regression y* = 2’3 + € and observed dependent variable
a, it y* <a,

yi=qvi, ifa<y; <b,
b, ifyr>b,

where a and b are constants, let f(¢) and F(e) denote the density and cdf of e. Assume that € is a
continuous random variable with mean 0 and variance o2, and f(e|z) = f(¢). Then:

OE
BUD _ 5 by e (a,b).
Proof. By definition
E(ylz) = a-P(y = alz) + E(yly € (a,b),2) - P(y € (a,b)|x) +b-P(y = blz)
a-P(y" <alz) +E(y"|y* € (a,0),2) - P(y" € (a,b)]x) +b-P(y* = blx)
=a-P(2'B+¢e <alx)+E{y*ly* € (a,b),z) - Pla<2'B+e <blx)+b-P(x'B+¢e>0blz)
a-Ple<a-—12'8lz) +E(y*|ly* € (a,b),2) - Pla—2'B<e<b—2a'Blx)+b-Ple >b—12'8lx)
—a- P(E_ a8 x)+E(y*|y*e(a,b),x)-lP’<a_w<5< b_x/ﬁ’x) +b~IP(€2 b-=B|,
o o o o o o o
(1)
Denote z = £,
A= RS FA), =)
B=""T8 - F®), =),

so that (1) becomes

' B

_ ! _ el _ !

E(y|x):a~P(€§a x)+E(y*|y*e(a7b),x)-P<a xﬁ<5 b xﬁx)—&—bl["(gzb Iﬁx

o o o o o o

=a-P(z < Alz) +E(y*|y* € (a,b),z) P(A<z2< Blz)+b-P(z > B|xz)
=a-F, +E@W*|ly" € (a,b),x)-(Fy — F,) +b- (1 — F}).

()

Next, we want to obtain the (%) term, i.e. the conditional mean of the continuous variable. Notice that this
is the expectation of the truncated variable, E(yly € (a,b),x), i.e. expectation of y conditionally on y falling
between the truncation points a and b. Hence, it will also answer our third question. By properties of the
conditional expectation:

E(y*|y* € (a,b),2) =E(2'B+¢ela<2'B+¢e < b,x)
=2'B+E(ela—a'f<e<b—1a'B,x)

=2'B+ ]E(‘ B E<b_x/6,x>
1% o
Zxﬂ+U]E(z|A<z<B,x)
B
) a:’ﬁ—!—a/A %dz, (2)

::L'/B—’—

B
Fb—Fa/A zf(z)dz

where normalising by a constant (F, — Fy,) in (*) is due to truncation.



Collecting (1) and (2) gives us the desired expectation of the censored variable:

E(ylz) = a- Fo + E(y*ly" € (a,0),2) - (Fp — Fo) +b- (1 = F)

B
FbiFa/A z2f(2)dz

B
:aoFa+x'ﬂ~(Fb7Fa)+J/A z2f(2)dz+b- (1 — Fp). (3)

=a-F,+ |28+

(Fy—Fo) +b- (1 - F)

(m)

What is only left is to differentiate (3) wrt to x. Notice that differentiating of the cdf F, wrt respect to x gives
us the pdf f, - (%) (e = a,b), where the last term obviously follows form the chain rule. Notice, that in (H)

the only place where z is present are the limits of integration. Hence, we need to use Leibnitz’s integral rule?
as follows:

o), ( 5>+6 G Bt [f (JB) . ( B)]+a/ 2f(2)dz— b fy- ( B)

dA
{2 ==L 201 Afa}

—a-f- ( 5)+5 (Fy— Fa)+2'8- [f (‘f)—fa-(jf)]+o-<be—Afa>-(—f)—b~fb~(_f).

Finally, we simplify by cancelling out terms in the above expression (using the definitions of A and B), to
obtain:

IE(ylz)
ox

:ﬁ'(Fb_Fa)
=0-P(y; € (a,0)).

2Leibnitz’s integral rule for differentiation under the integral sign states that:

d oo db(t) da(t)  [*® df(x,t)
L, S0t =000 % s, G0+ [0

where in our case the last term drops out because f(z) does not depend on z.



The result from the theorem applied to the particular case of the original Tobit model (with left-censoring at
0) simplifies to3:

OE(y;|x;) _ xéﬁ
83:1- - ﬂ @ <0’> '

Roughly speaking, it suggests that the OLS estimates of the coefficients in a Tobit model usually resemble the
MLESs times the proportion of nonlimit observations in the sample.

Hence, the marginal effects in the case of censoring are not 5 but smaller, with reduction factor ® (xjf ):

e the difference will be small for large values of

mi’_ﬁ, as then & ("cm) ~1;

o

e the difference will be large for small values of x}f , as then (’”ETB) ~ 0.

The intuition should be clear: we observe a positive y; > 0 when y; = 8 +¢; > 0, so the condition for
ziB

observing an uncensored variable is z; = £ > — =1

o If x%ﬁ is high and positive, then this is a non-restrictive condition and we will usually observe y; = y;.
So when there is hardly any censoring, the marginal effects will be almost the same as in the standard
regression model, i.e. (.

o If % is high and negative, then this is a very restrictive condition and we will usually observe the censored

y; = 0. So when there is a “hard” censoring, the marginal effects will be negligible, and only via an increase
in the probability of recording a non-censored observation.

Hence, notice that the marginal effect of the explanatory variables in the Tobit model can be decomposed in
two parts: when x}f increases and

= if y; = 0, then the probability of y; > 0 (a positive response) increases (i.e. the probability of falling in
the positive part of the distribution);

= if y; > 0, then the mean response increases (i.e. the conditional mean of y*).

3 Lecture Problems

Exercise 5

Suppose that we only started keeping track of these machine parts after 2 years and that by now all machine parts
are broken. That is, we now have left-truncated data where we only observe yX > In(2) (instead of right-truncated
data with yF <In(1) =0).

(a) Derive the probability density function (pdf) of y; in this case.

Underlying population that satisfies all the classical linear model assumptions:
yi = 2if + ui "N N(0,02)

where each u; is independent from each z; (4,5 =1,2,...,n).

Left-truncated variable y;:

~_ Jnot observed, if y; <In(2),
S P if 7 > In(2).

Here: boundary ¢ = In(2) for log-durations.

3Please check! Notice that then a = 0, there is no b (or, formally, b = c0) and F = & and f = ¢.



We start with deriving the cumulative distribution function (CDF) of the truncated observation y;
(given ;)% which is equal to the conditional probability P(y; < aly; > c) for a > ¢

P(y; < a) =P(y; <aly; > )
Y p(y; < aand yi > clyf > o)

Ple <y; <a)
P(yr > ¢)

o PS5 < < 220

o - lea

P <y;,w§3 - Hcgﬁ>
g

o

() 0 ()
T (=)
*—1',:-6

where in (%) we used that ¢ < a (so that yf < a and y; > ¢ imply ¢ < y} < a) and in (xx) that %=
has standard normal distribution N(0,1).

Then, the probability density function (pdf) of y; is given by the derivative of the cdf:

puo) = L=
o0 (+22) 1

(=
C1-e ()

(b) Derive the log-likelihood In L(8, o).
The likelihood function (of the whole sample) is given by:

(ﬂ? ) (yla"'vyn|zla"'axn)

()

= H (yilzi)
i=1

1 Yi—x; B
o )
Wy
where (x) holds because y1,...,y, are independent (conditionally upon z1,...,x,).

And the loglikelihood is simply the logarithm of the likelihood:

3

InL(B,0 Zlnp yil:)

_ : {_m(a) +In [qﬁ (y;xﬁ)] ~In [1 -? <C_:B>} }

Note that maximizing In L(8, o) (using numerical optimization method like BFGS) yields Barr and 61

4Note: all probabilities below are conditional upon z; (dropped from notation to make formulas (hopefully) clearer).



Exercise 6

Derive the log-likelihood in a linear regression model where the dependent variable is left-truncated (with bound
0) and right-censored (with bound 1). That is:

y; = 238 + i,

U; NN(0702),
not observed, if yi <0,
Yi =i if 0 <y <1,
1, ifyr > 1.

First derive the probability P(y; = 1|x;) and the density for y; (for 0 <y; <1).

The probability P(y; = 1|x;) is the conditional probability P(y; > 1|y > 0), because we only observe observa-
tions with yf > 0 (where the conditioning upon z; is again dropped from the notation):

P(y; > 1)
P(y; > 0)
PB4 u; > 1)
- P28 +u; >0)
P(u; > 1—i8)

P(u; > 0 — 3)
P(#=0)
3 )

P("1>0 i

P(y; > 1]y >0) =

\/

(e [ed

1-P

1-P

where we used that “; has a standard normal distribution.

The density for y; (for 0 < y; < 1) is the density in the left-truncated model (with boundary ¢ = 0). From
Exercise 5 we already have the pdf:

pyla) = T
)

o)
1-o (=)

Note: censoring does not affect the pdf of those observations that are not censored. Whereas truncation does
affect the pdf of those observations that are not truncated.

Likelihood: product of probability density functions (#) (for y; < 1 with continuous distribution) and probability
functions (&) (for y; = 1 with discrete distribution) with observed y; (and z;) substituted:

(ﬁv ) (yl,-'~7yn|x1;-~7yn)

; H yz|x1
Lo (v - (2)
= H T L (0—xB)

{yi<1} 1-9 (0—$;B) {yi=1} 1-@ (O_U;B> 7

(®) (%)




where (x) holds because y1,. ..,y are independent (conditionally upon z1,...,x,).

Then, the loglikelihood is:

InL(B,0) = Z In p(yi|x;) =
i=1

= 3 i) fo (B0 cw e (250

{yi<1}
()
1—28 0—x8
T {ln{l—fb( i ﬂ_m[l_@(z )H
{yiz—:l} ? 7
()

Note: maximizing In L(8, o) (using numerical optimization method like BFGS) yields BM r and .

4 Exercises

4.1 W17/6

Consider a family saving function for the population of all families in the United States:
sav = Bo + Brinc + Bohhsize + PBzeduc + Biage + u,

where hhsize is household size, educ is years of education of the household head, and age is age of the household
head. Assume that E(ulinc, hhsize, educ, age) = 0.

(i) Suppose that the sample includes only families whose head is over 25 years old. If we use OLS on such a
sample, do we get unbiased estimators of the 3; 7 Explain.

OLS will be unbiased, because we are choosing the sample on the basis of an exogenous explanatory vari-
able. The population regression function for sav is the same as the regression function in the subpopulation
with age > 25.

(i) Now, suppose our sample includes only married couples without children. Can we estimate all of the
parameters in the saving equation? Which ones can we estimate?

Assuming that marital status and number of children affect sav only through household size (hhsize), this
is another example of exogenous sample selection. But, in the subpopulation of married people without
children, hhsize = 2. Because there is no variation in hhsize in the subpopulation, we would not be able
to estimate (B,. Effectively, the intercept in the subpopulation becomes 5y + 232, and that is all we can
estimate. But, assuming there is variation in inc, educ, and age among married people without children
(and that we have a sufficiently varied sample from this subpopulation), we can still estimate 81, 83 and

fa.

(1ii) Suppose we exclude from our sample families that save more than $25,000 per year. Does OLS produce
consistent estimators of the ;¢

This would be selecting the sample on the basis of the dependent variable, which causes OLS to be
biased and inconsistent for estimating the £ in the population model. We should instead use a truncated
regression model.

4.2 Double censoring problem

Management consultants working for a very large consultancy firm AwesomeConsulting are assigned to a number
of projects depending on their characteristics, collected in a k x 1 vector z} for individual i (including their
salary, experience, etc.). We want to model their weekly chargeable hours y;. We have a random sample of N
independent observations on y; and corresponding x};. For simplicity we model the reqular number of hours as a
continuous variable, but take into account the possibility that during a week there might be no chargeable hours
and that the mazimum number of hours that can be charged to a client is by contract limited to 40 hours.
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Figure 1: Double censoring: left censoring at 0 and right censoring at 40. Example with the mean x}8 at 30 and
the standard deviation ¢ = 15. Then P(y; = Olz;) = ® (—%) = 0.0228, P(y; = 40jz;) =1 — @ (M) =
0.25258 and P(0 < y; < 40[z;) = [, ¢(2)dz = 0.7247.

(a) Model this situation using a latent variable y* given by:
y; = 28+ ui,
u; R N(0,0?).

Give the appropriate probability mass- and density functions for the different outcomes of the observed
charged hours y. Give an interpretation and illustrate the situation graphically.

Standard censored regression model with left and right censoring (at 0 and 40) is given by:
y;k = ‘T;ﬁ + uy4,
us N0, %),
0, if yf <0,

yi =y, 0 <y’ <40,
40, if yr > 40.

The probability mass functions at the censored value of 0 is the probability of observing the value of 0:

P(y; = 0lz;) = P(y; < 0lz;)
= P28 +u; <0|z;)

= P(u; < —}Blz;)
/
(;) P (uz < _xl xl)
g g
) /
(%) P <m < xﬂ)
g g

where in (x) we standardise u; by dividing it by its standard deviation o and in (**) we use the assumption
about independence of u; and x;.

Similarly, the probability mass functions at the censored value of 40 is the probability of observing the



value of 40:

P(y; = 40|z;) = P(y; > 40|z;)

g

where in (%) we standardise u; by dividing it by its standard deviation o, in (%) we use the symmetry of
the standard normal distribution, in (* * *) we use the assumption about independence of u; and z; and
in (* % xx) the property of ®, the CDF of the standard normal distribution: ®(—z) =1 — ®(x).

For continuous y; € (0,40) we use the probability density function. Because then
yi =y =8+,

with u; %" N(0,02), we have the standardised normal variable L= @ for which

ke = 2o (B0

(b) Derive the appropriate log-likelihood function for N independent observations.

Now the likelihood is a product of probability density functions (#) (for 0 < y; < 40 with continuous
distribution) and two probability functions for y; with discrete distributions: (&) for y; = 40 and (©) for
y; = 0, with observed y; (and ;) substituted:

L(B,0) =

"7yn|x17"')yn)

(v1
;lf[ (yilzs)
L I ) e )

{0<yi<40} {yi=40} {y:=0}

() (%) ©)
where (x) holds because y1,. .., y, are independent (conditionally upon x1,...,x,).
Then, the loglikelihood is:

mL(B,0) = Inp(y|a;) =
i=1
—
= Z {—ln(o)-i—ln [d) <y2 %5)}}
{0<y,; <40} g
(&)
40 — 28 i3
+ 0y {1n[1—<1><0 )H+Z {1n<1><—0>}.
{y:=40} {y:=0}
(%) (V)

10



(c) What is the marginal effect of salary (2nd element in x;) on the possibility of individual i being fully (40
hours) chargeable?
We need to differentiate the probability of being charged 40 hours with respect to the second variable,
salary. We have:

OP(y; = 40)  OP(yr > 40)

8.131'2 8%‘1‘2

:¢<40—ng) &

g g

Note that is it positive when Gy > 0.

(d) What problems in modelling can you expect in the following cases? Think about the validity of the model
assumptions.

(i) The sample consists of a sample based on direct colleagues from the same branch.
Contemporaneous correlation — causes observations to be non i.i.d..

(i) The sample consists of a sample based on weeks for one individual such that i refers to the weeks in
the sample?
Serial correlation — causes observations to be non i.i.d..

5 Computer Exercise

W17/C3

Use the data in fringe.wf1 for this exercise®.

(i) For what percentage of the workers in the sample is pension equal to zero? What is the range of pension
for workers with nonzero pension benefits? Why is a Tobit model appropriate for modelling pension?

PENSION PENSION

200 32

.28

160 -
24

120 - .20 -

Frequency
Relative Frequency
>
L

084
404
04 -

L e = Y P R o e Y = Y
0 250 500 7¥50 1,000 1,250 1,500 1,750 2,000 2,250 2,500 2,750 3,000 0 250 500 750 1,000 1,250 1,500 1,750 2,000 2,250 2,500 2,750 3,000

We can see that out of 616 workers, 172, or about 0.28%, have zero pension benefits. For the 444 workers
reporting positive pension benefits, the range is from 7.28 to 2,880.27%. Therefore, we have a nontrivial
fraction of the sample with pension; = 0, and the range of positive pension benefits is fairly wide. The
Tobit model is well-suited to this kind of dependent variable.

(i1) Estimate a Tobit model explaining pension in terms of exper, age, tenure, educ, depends, married,
white, and male. Do whites and males have statistically significant higher expected pension benefits?

5N = 616, cross-sectional family data on pension benefits.
6You can easily check it in EViews by sorting pension: pension.sort.

11



[=) Equation: EQ_TOBIT Workfile: FRINGE: Fringe\, [E=nE=R ===

[ViewIPro:IOme:t] [PrinthameIFreeze] lEstimatelFore:astlstatisesids]

Dependent Variable: PENSION

Method: ML - Censored Nermal (TOBIT) (Newton-Raphson / Marquardt
steps)

Sample: 1616

Included observations: 616

Left censoring (value) series: 0

Convergence achieved after 5 iterations

Coefficient covariance computed using observed Hessian

Variable Coefficient Std. Error z-Statistic Prob.
C -1252.429 219.0781  -5.716815 0.0000
EXPER 5.203452 6.009515 0.865870 0.2866
AGE -4 638944 5710965 -0.812287 0.4166
TENURE 36.02385 4.564528 7.892130 0.0000
EDUC 93.21262 10.89176 8558083 0.0000
DEPENDS 35.28481 21.91775 1.609864 01074
MARRIED 53.68858 7173541 0.748425 0.4542
WHITE 1440855 102.0792 1.411507 0.1581
MALE 2081505 69.892098 4.405890 0.0000

Error Distribution

SCALE.C(10) 677.7382 2414034 28.07493 0.0000
Mean dependent var 6523368 S.D. dependentvar 619.1199
S E ofregression 5321477 Akaike info criterion 11.95767
Sum squared resid 1.72E+08 Schwarz criterion 12.02948
Log likelihood -3672.964 Hannan-Quinn criter. 11.98559
Avg. log likelihood -5.962603
Left censored obs 172 Right censored obs 0
Uncensored obs 444 Total obs 616

Being white or male (or, of course, both) increases predicted pension benefits, although only male is
statistically significant with the z statistics (asymptotically equal to the ¢ statistics) z ~ 4.41 and the
corresponding p-value (i.e. Prob. in the EViews output) of 0.0000. For white the p-value of 0.1581 does
not allow us to reject the null that its coefficient is equal 0 (at the standard significance level a = 0.05).

(iti) Use the results from part (i) to estimate the difference in expected pension benefits for a white male and a

nonwhite female, both of whom are 35 years old, are single with no dependence, have 16 years of education,

and have 10 years of experience’.

We need to use formula (17.25) from the book, which is

E(ylz) = @ (iﬁ) 2'B+o-¢ (xTﬁ> , (17.25)

o
and describes the expected value of the dependent variable y in the Tobit model.

First, we consider (™ with white = 1, male =1, age = 35, maried = 0, depends = 0, educ = 16 and
exper = tenure = 10. The linear index z(™7j is equal to

™TF = —1252.43 4 5.20 - 10 — 4.64 - 35 + 36.02 - 10 + 93.21 - 16 + 35.28 - 0 + 53.69 - 0 + 144.09 - 1 + 308.15 - 1
= 940.97.

Second, we consider () with white = 0, male = 0, age = 35, maried = 0, depends = 0, educ = 16 and
exper = tenure = 10. The linear index 27§ is equal to

e DTF = —1252.43 +5.20 - 10 — 4.64 - 35 + 36.02 - 10 + 93.21 - 16 + 35.28 - 0+ 53.69 - 0 + 144.09 - 0 + 308.15 - 0
= 488.73.

Since the estimated standard deviation o of the error term u; is equal to & = 677.74 (c.f. SCALE: C(10)),

we have

(m)T 3 . (m)T 3
g g

940.97 940.97
= (67774) -940.97 + 677.74 - ¢ (677.74)
=0.92-940.97 + 677.74 - 0.15
= 966.49

"Hint: use the formula (17.25) from the book for the expectation of the censored variable (in other words, for the predicted
value from the Tobit model):

E(y|z) = @ (3”%5) 2TB+o-¢ (xTﬁ> . (17.25)

g

12



and

E(pension|zH) = &

=

(HT 3 . N3
M 2NTE 6.6 u
g g
488.73 488.73
6777 ) 488.73 +677.74 - ¢ 67774

= 0.76 - 488.73 + 677.74 - 0.31
= 582.16,

respectively. The difference in the expected pension value for a white male and for a nonwhite female
with the same all other characteristics is thus

966.49 — 582.16 = 384.33.

(iv) Add union to the Tobit model and comment on its significance.

[=] Equation: EQ_ TOBIT2 Workfile: FRINGE:Fringe\,

[E=8 HeR (=

[view] proc| onject [] print  tame | reeze [ Estimate [ Forecast  stats | Resias |

Dependent Variable: PENSION
Method: ML - Censored Normal (TOBIT) (Newton-Raphson / Marquardt

steps)
Sample: 1616

Included observations: 616

Left censoring (value) series: 0
Convergence achieved after 5 iterations
Coefficient covariance computed using observed Hessian

Variable Coefficient Std. Emor  z-Statistic Prob
c -1571.506 2185445  -7.190784 0.0000
EXPER 4.203524 5.830047 0.753434 0.4512
AGE -1.653532 5555709  -0.297628 0.7660
TENURE 28.77837 4.504963 6.388147 0.0000
EDUC 106.8277 1077274 9.916481 0.0000
DEPENDS 41.46623 21.21414 1.954650 0.0506
MARRIED 19.74555 69.50048 0.284107 07763
WHITE 159.2972 98.96748 1.809592 0.1075
MALE 257.2457 68.02052 3781882 0.0002
UNION 439.0460 62.48832 7.026049 0.0000

Error Distribution
SCALEC{11) 652.8974 2316287 2818724 0.0000
Mean dependentvar 652.3368 S.D. dependentvar 619.1199
S.E. of regression 518.5418 Akaike info criterion 11.88166
Sum squared resid 1.63E+08 Schwarz criterion 11.96065
Log likelihood -3648552 Hannan-Quinn criter 1191237
Avg. log likelihood -5.922973

Left censored obs 172 Right censored obs 0
Uncensored obs 444 Total obs 616

The estimated coefficient for union is ‘large’ (equal to 439.05) and significant (p-value=0.0000).

(v) Apply the Tobit model from part (iv) but with peratio, the pension-earnings ratio, as the dependent variable.
(Notice that this is a fraction between zero and one, but, though it often takes on the value zero, it never
gets close to being unity. Thus, a Tobit model is fine as an approximation.) Does gender or race have an
effect on the pension-earnings ratio?

Indeed, the maximum value of peratio is less than 0.21, so a model with the right censoring is not needed.
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(=] Equation: EQ TOBIT3 Workfile: FRINGE:Fringe\,
[ViewIProc]Ome:t] lPrint[NameIFreezel lEstimatelFarecastlstatisesids]

Dependent Variable: PERATIO

Method: ML - Censored Normal (TOBIT) (Newton-Raphson / Marquardt
steps)

Sample: 1616

Included obsernvations: 616

Left censoring (value) series: 0

Convergence achieved after 5 iterations

Coeflicient covariance computed using observed Hessian

Variable Coefficient Std. Error z-Statistic Prob
o -0.055063 0.014490 -3.800184 0.0001
EXPER 0.000170 0.000386 0.439596 0.6602
AGE -0.000218 0.000367 -0593149 0.5531
TENURE 0.001760 0.000302 5.831961 0.0000
EDUC 0.005348 0.000717 7.456528 0.0000
DEPENDS 0.000826 0.001418 0.582634 0.5601
MARRIED 0.003294 0.004534 0.710872 0.4772
WHITE 0.003179 0.006566 0.484241 0.6282
MALE 0.002594 0.004531 0.572444 0.5670
UNION 0.030046 0.004186 7177805 0.0000

Error Distribution

SCALEC(11) 0.043847 0.001574 27.85108 0.0000
Mean dependent var 0.045961 S.D. dependentvar 0.037940
SE ofregression 0034287 Akaike info criterion -1.937001
Sum squared resid 0711224 Schwarz criterion -1.858014
Log likelihood 607 5962 Hannan-Quinn criter. -1.906289
Avg. log likelihood 0.986357
Left censored obs 172 Right censored obs 0
Uncensored obs 444 Total obs 616

When peratio is used as the dependent variable in the Tobit model, both white and male become in-
significant (with the p-values of 0.6282 and 0.5670, respectively).

We can also check the joint significance of these two variables. For that, we can run the Wald test as
shown below.

] (=) Equation: EQ_TOBIT3 Workfile: FRINGE:Fringe\ = ==
[ view]proc| object [ print | Name [ Frecze [ estimate | Forecast  stats  Resias

Representations

Estimation Output IT) (Newton-Raphson / Marquardt
Actual Fitted, Residual 3
Gradients and Derivatives »

Covariance Matrix

Coefficient Diagnostics 3 Confidence Intervals

Residual Diagnostics 3 ConfidenceEllipse...

Wald - Coefficient Restrictions...
Omitted Variables - Likelihood Ratio...

Categorical Regressor Stats

tabel . Redundant Variables - Likelinood Ratio...
TENURE 0.001760 0.000302 5.831961 0.0000
EDUC 0.005343 0.000717 7.456528 0.0000
DEPENDS 0.000826 0.001418 0.582634 0.5601 8 ¥
MARRIED 0003204 0004634 0710872 04772 Wald Test Ié]
WHITE 0002179 0.006566 0.484241 06282
MALE 0002594 0004531 0.572444 05670
UNION 0030046 0004186 7177805 00000 Coefficient restrictions separated by commas
Error Distribution C(8)=0, C(3)=0
SCALE:C(11) 0.043847 0.001574 27.85105 0.0000
Mean dependentvar 0.045961 S.D. dependentvar 0.037940
SE. of regression 0.034287  Akaike info criterion -1.937001
Sum squared resid 0711224 Schwarz criterion -1.858014
Log likelihood 6075962 Hannan-Quinn criter. -1.906289
Avg. log likelihood 0.986357 Examples
Left censored obs 172 Right censored obs 0 C(1)=0, C(3)=2"C(4)
Uncensored obs 444 Total obs 616

[V\ew]Pm{[Dhject] [Print]Name]Freeze] [E;t\mateIFnre(a;t]Stat;

Wald Test

Equation: EQ_TOBIT3

Test Statistic Value df Probability
F-statistic 0.302345 (2, 605) 0.7392
Chi-square 0.604689 2 0.7391

Mull Hypothesis: C(8)=0, C{9)=0
Null Hypothesis Summary:

Normalized Restriction (= 0) Value Std. Em.
Ci8) 0.003179 0.006566
C(@ 0.002594 0.004531

Restrictions are linear in coefficients

The resulting F' statistic is equal to 0.30 with the corresponding p-value of 0.7392. So at any reasonable
significance level we cannot reject the null that jointly white and male are insignificant.

Therefore, neither whites nor males seem to have different preferences for pension benefits as a fraction
of earnings. White males have higher pension benefits because they have, on average, higher earnings.
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